Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569709

RESUMO

The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane's raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Ciclodextrinas , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Ciclodextrinas/farmacologia , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo
4.
Orv Hetil ; 163(14): 571-572, 2022 04 03.
Artigo em Húngaro | MEDLINE | ID: mdl-35377854
8.
Front Physiol ; 11: 599822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384612

RESUMO

In amphibian skeletal muscle calcium (Ca2+) sparks occur both as voltage-dependent and voltage-independent ligand-activated release events. However, whether their properties and their origin show similarities are still in debate. Elevated K+, constant Cl- content solutions were used to initiate small depolarizations of the resting membrane potential to activate dihydropyridine receptors (DHPR) and caffeine to open ryanodine receptors (RyR) on intact fibers. The properties of Ca2+ sparks observed under control conditions were compared to those measured on depolarized cells and those after caffeine treatment. Calcium sparks were recorded on intact frog skeletal muscle fibers using high time resolution confocal microscopy (x-y scan: 30 Hz). Sparks were elicited by 1 mmol/l caffeine or subthreshold depolarization to different membrane potentials. Both treatments increased the frequency of sparks and altered their morphology. Images were analyzed by custom-made computer programs. Both the amplitude (in ΔF/F0; 0.259 ± 0.001 vs. 0.164 ± 0.001; n = 24942 and 43326, respectively; mean ± SE, p < 0.001) and the full width at half maximum (FWHM, in µm; parallel with fiber axis: 2.34 ± 0.01 vs. 1.92 ± 0.01, p < 0.001; perpendicular to fiber axis: 2.08 ± 0.01 vs. 1.68 ± 0.01, p < 0.001) of sparks was significantly greater after caffeine treatment than on depolarized cells. 9.8% of the sparks detected on depolarized fibers and about one third of the caffeine activated sparks (29.7%) overlapped with another one on the previous frame on x-y scans. Centre of overlapping sparks travelled significantly longer distances between consecutive frames after caffeine treatment then after depolarization (in µm; 1.66 ± 0.01 vs. 0.95 ± 0.01, p < 0.001). Our results suggest that the two types of ryanodine receptors, the junctional RyRs controlled by DHPRs and the parajunctional RyRs are activated independently, using alternate ways, with the possibility of cooperation between neighboring release channels.

10.
Magy Seb ; 71(3): 144-145, 2018 09.
Artigo em Húngaro | MEDLINE | ID: mdl-30231636
11.
Orv Hetil ; 159(16): 648-649, 2018 Apr.
Artigo em Húngaro | MEDLINE | ID: mdl-29658284
12.
Gen Physiol Biophys ; 37(3): 253-261, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29589836

RESUMO

Phototoxicity is the most common problem investigators may encounter when performing live cell imaging. It develops due to excess laser exposure of cells loaded with fluorophores and can lead to often overlooked but significant artifacts, such as massive increase of intracellular Ca2+ concentration, which would make data interpretation problematic. Because information about laser- and dye-related changes in cytoplasmic calcium concentration is very limited, we aimed to describe this phenomenon to help investigators using laser scanning confocal microscopy in a non-invasive way. Therefore, in the present study we evaluated fluorescent fluctuations, which evolved in Fluo-3/4/8 loaded mouse pancreatic acinar cells during very low intensity laser excitation. We demonstrate that after standard loading procedure (2 µM Fluo-3/4/8-AM, 30 min at room temperature), applying 488 nm laser at as low as ca. 10 µW incident laser power (0.18 µW/µm2) at 1 Hz caused repetitive, 2-3 fold elevations of the resting intracellular fluorescence. The first latency and the pattern of the fluorescence fluctuations were laser power dependent and were related to Ca2+-release from intracellular stores, as they were abolished by BAPTA-AM treatment in Ca2+-free medium, but were not diminished by the reactive oxygen species (ROS) scavenger DMPO. Worryingly enough, the qualitative and quantitative features of the Ca2+-waves were practically indistinguishable from the responses evoked by secretagogue stimulation. Since using similar imaging conditions, a number of other cell types were reported to display spontaneous Ca2+ oscillations, we propose strategies to distinguish the real signals from artifacts.


Assuntos
Artefatos , Cálcio/metabolismo , Lasers , Imagem Óptica , Células Acinares/metabolismo , Células Acinares/efeitos da radiação , Animais , Células HEK293 , Humanos , Camundongos , Pâncreas/citologia
14.
Biophys J ; 113(11): 2496-2507, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212003

RESUMO

Store-operated Ca2+ entry (SOCE) is a Ca2+-entry process activated by the depletion of intracellular stores and has an important role in many cell types. In skeletal muscle, however, its role during physiological muscle activation has been controversial. To address this question, sarcoplasmic reticulum (SR) calcium release in a mouse strain with a naturally occurring mutation in the myostatin gene (Compact (Cmpt)) leading to a hypermuscular yet reduced muscle-force phenotype was compared to that in wild-type mice. To elicit Ca2+ release from the SR of flexor digitorum brevis (FDB) fibers, either a ryanodine receptor agonist (4-chloro-meta-cresol) or depolarizing pulses were used. In muscles from Cmpt mice, endogenous protein levels of STIM1 and Orai1 were reduced, and consequently, SOCE after 4-chloro-meta-cresol-induced store depletion was suppressed. Although the voltage dependence of SR calcium release was not statistically different between wild-type and Cmpt fibers, the amount of releasable calcium was significantly reduced in the latter, indicating a smaller SR content. To assess the immediate role of SOCE in replenishing the SR calcium store, the evolution of intracellular calcium concentration during a train of long-lasting depolarizations to a maximally activating voltage was monitored. Cmpt mice exhibited a faster decline in calcium release, suggesting a compromised ability to refill the SR. A simple model that incorporates a reduced SOCE as an important partner in regulating immediate calcium influx through the surface membrane readily accounts for the steady-state reduction in SR calcium content and its more pronounced decline after calcium release.


Assuntos
Cálcio/metabolismo , Fibras Musculares Esqueléticas/citologia , Retículo Sarcoplasmático/metabolismo , Animais , Fenômenos Eletrofisiológicos , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Mutação , Miostatina/genética
16.
Biomed Res Int ; 2017: 9795271, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680886

RESUMO

The aim of this study was to investigate the effect of the serine/threonine protein phosphatase inhibitor, calyculin-A (CLA), on clot formation and on the procoagulant activity of human platelets. Platelet-rich plasma (PRP) samples were preincubated with buffer or CLA and subsequently platelets were activated by the protease-activated receptor 1 (PAR-1) activator, thrombin receptor activating peptide (TRAP). Clot retraction was detected by observing clot morphology up to 1 hour, phosphatidylserine- (PS-) expression was studied by flow cytometry, and thrombin generation was measured by a fluorimetric assay. For the intracellular Ca2+ assay, platelets were loaded with calcium-indicator dyes and the measurements were carried out using a ratiometric method with real-time confocal microscopy. CLA preincubation inhibited clot retraction, PS-expression, and thrombin formation. TRAP activation elicited Ca2+ response and PS-expression in a subset of platelets. The activated PRP displayed significantly faster and enhanced thrombin generation compared to nonactivated samples. CLA pretreatment abrogated PS-exposure and clot retraction also in TRAP-activated samples. As a consequence of the inhibitory effect on calcium elevation and PS-expression, CLA significantly downregulated thrombin generation in PRP. Our results show that CLA pretreatment may be a useful tool to investigate platelet activation mechanisms that contribute to clot formation and thrombin generation.


Assuntos
Plaquetas/metabolismo , Inibidores Enzimáticos/farmacologia , Fibrinólise/efeitos dos fármacos , Oxazóis/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Masculino , Toxinas Marinhas
20.
Orv Hetil ; 157(44): 1774-1775, 2016 Oct.
Artigo em Húngaro | MEDLINE | ID: mdl-27796124
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...